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ABSTRACT

One of the goals of Space Weather studies is to achieve a better understanding of impulsive phe-
nomena, such as Coronal Mass Ejections (CMEs), in order to improve our ability to forecast them
and mitigate the risk to our technologically driven society. The essential part of achieving this goal
is to assess the performance of forecasting models. To this end, the quality and availability of suit-
able data are of paramount importance. In this work, we have merged already publicly available
data of CMEs from both in-situ and remote instrumentation in order to build a database of CME
properties. To evaluate the accuracy of such a database and confirm the relationship between in-situ
and remote observations, we have employed the drag-based model (DBM) due to its simplicity and
inexpensive cost of computational resources. In this study, we have also explored the parameter
space for the drag parameter and solar wind speed using a Monte Carlo approach to evaluate how
well the DBM determines the propagation of CMEs for the events in the dataset. The dataset of
geoeffective CMEs constructed as a result of this work provides validation of the initial hypothesis
about DBM, and solar wind speed and also yields further insight into CME features like arrival
time, arrival speed, lift-off time, etc. Furthermore, the dataset also provides statistical metrics for
the DBM model parameters. Also, the probability distribution function for the free parameters
of DBM has been derived through a Monte Carlo-like inversion procedure. Probability functions
obtained from this work are comparable to distributions employed in previous works. Using a data-
driven approach, this procedure allows us to present a homogeneous, reliable, and robust dataset
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for the investigation of CME propagation. On the other hand, possible CME events are identified
where DBM approximation is not valid due to model limitations and higher uncertainties in the
input parameters, those events require more thorough investigation.

Key words. Coronal Mass Ejection, Heliosphere, Magnetohydrodynamic Drag, Space Weather,
Forecast tools

1. Introduction

ICMEs (Interplanetary Coronal Mass Ejections) are eruptions of plasma and magnetic fields from
the Sun’s corona that propagate in the Heliosphere (Webb and Howard, 2012). These plasma and
magnetic field structures ejected from the Sun travel through the interplanetary space environment
and reach the 1 AU range within 1-5 days (Chen, 2011). In in-situ data, ICMEs can be discerned
from the average solar wind by their distinct signatures, such as the enhanced magnetic field, the
higher particle speed, and the variations in plasma density (Liu et al., 2010; Papaioannou et al.,
2016). They can also be observed remotely by using instruments such as coronagraphs (particu-
larly SOHO/LASCO with coronagraphs C1/C2/C3 Domingo et al. (1995); Brueckner et al. (1995),
STEREO/SECCHI with COR1/COR2 Kaiser et al. (2008); Howard et al. (2008) ), and Heliographic
imagers (HI1/HI2) (Eyles et al., 2009).

ICMEs are among the main drivers of Space Weather, impacting the space environment and
human technology (Gosling et al., 1991; Tsurutani et al., 1988; Schwenn, 2006; Pulkkinen, 2007;
Temmer, 2021). The plasma and magnetic fields ejected from the Sun can interact with Earth’s
magnetic field, leading to geospace disturbances (Koskinen and Huttunen, 2007), which affect a
wide range of technological systems in space, such as satellites, telecommunications, and the GNSS
systems (Shea and Smart, 1998; Schrijver and Siscoe, 2010; Aquino and Sreeja, 2013; Piersanti
et al., 2017). The present strategies to mitigate the effects of ICMEs on space-based technologies
and infrastructures require the knowledge of the ICME arrival time with low uncertainty to allow
operators to take action to protect their equipment, by shutting them down or putting them in a safe
mode (Barbieri and Mahmot, 2004; Sreeja, 2016; Veettil et al., 2019).

In the last decades, space agencies have designed and launched missions to observe the Sun
and monitor the solar wind characteristics, and track CMEs and ICMEs as they travel through
space, with the aim to study their interactions with the interplanetary environment. Despite these
advancements in space weather forecasting, accurately predicting the characteristics of ICMEs such
as their Time-of-Arrival (ToA) and Speed-at-Arrival (SaA) at Earth, as well as the magnitude and
direction of the southward component of their magnetic field (which is crucial for determining the
intensity of geomagnetic storms Koskinen and Huttunen, 2006), remains a challenging task for the
scientific community (Manchester et al., 2017; Riley et al., 2018; Vourlidas et al., 2019).

Following the evolution of numerical methods and the increase of available computational
power, a number of empirical methods, physics-based analytical models, and MHD numerical
simulations for the ICME kinematics have been developed. In the MHD approximation, the
boundary conditions are derived from observed magnetograms and coronographic images and
model the propagation of the ejecta by numerically solving the magneto-hydrodynamic equa-
tions (ENLIL, HAFv.2 (Hakamada-Akasofu-Fry version 2)+3DMHD, EUHFORIA (EUropean
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Heliospheric FORecasting Information Asset) Odstrcil et al., 2003; Wu et al., 2007; Pomoell
and Poedts, 2018). These simulations allow for the inclusion and consideration of the physical
processes being modelled. However, their use requires substantial computing resources due to
their computationally intensive nature, making them expensive to run. The complete understanding
of the physical processes involved in the Sun-Earth relation relies heavily on numerical mod-
elling techniques. However, with present observation capabilities, the forecasting performance
of empirical and analytical methods are comparable to, or in some cases slightly better than,
those achieved with numerical methods due to uncertainties in the input parameters (Manchester
et al., 2017). This implies that the existing empirical and analytical approaches are still effective
and competitive in terms of their predictive capabilities and that the near future of space weather
forecasting lies with the use of these computationally light approaches and Machine Learning (ML).

In general, analytical methods are computationally lighter and their parameters can be easily
updated with new incoming data. Also, physics-based analytical models (e.g., Vršnak et al., 2013;
Rollett et al., 2016; Paouris and Mavromichalaki, 2017; Napoletano et al., 2018) can shed light
on the ICME dynamics, and this knowledge would possibly help us in refining also numerical
methods. On the other hand, the relationships between ToA and SaA and various CME parameters
measured at (or close to) their launch, have been used in empirical prediction methods (e.g.,
Manoharan, 2006; Gopalswamy, 2009), and most recently in a plethora of ML approaches. ML
techniques have become more and more used in space weather, as recently reviewed in Camporeale
(2019). In the last years, there have been many attempts to leverage on ML algorithms to obtain
the characteristics of an ICME at L1 from the associated CME observables (Bobra and Ilonidis,
2016; Liu et al., 2018; Wang et al., 2019, just to list a few). These ML algorithms use catalogues
of CME/ICME characteristics for the training, in order to set their parameters, validate their
results and check their performances. Consequently, it becomes more and more important to
build CME/ICME databases with a large number of events and small uncertainties (ML methods
typically need numerous, relevant and reliable examples in the datasets in order to give accurate
results VanderPlas et al., 2012; Ivezić et al., 2014).

In this paper, we present a method to update the catalogue of CME-ICME pairs published
in Napoletano et al. (2022), by using a constrained Monte-Carlo strategy to validate its entries. The
constrained Monte Carlo strategy allowed us to explore the parameter space in a more effective
way. We then make use of this updated catalogue to revisit the Probability Distribution Functions
(PDFs) to use for the P-DBM method (Napoletano et al., 2018; Del Moro et al., 2019). Finally,
we present a comparison of these PDFs for different solar wind conditions and against previous
literature.
The paper is organized as follows. Section 2 describes the DBM model and the mathematical
methodology to retrieve PDFs from the catalogue. In Section 3, we analyse the results of the
inversion and use them to relabel the CME/ICME catalogue entries and to obtain PDFs for different
ICME types. Section 4 is dedicated to conclusions and discussions.
The CME-ICME dataset compiled and used in this work can be found at https:
//zenodo.org/record/8063404 and a description of the different column headers is pro-
vided in the appendix A.
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2. Methods

2.1. Drag-Based Model (DBM)

The Drag-Based Model is one of the simplest models that describes CME propagation through
the heliosphere. Due to its simplicity and calculation speed, it is one of the most popular models
used in CME forecast tools. In recent years, DBM has been used in many studies to describe CME
propagation which are summarised in Dumbović et al. (2021).
DBM is based on the assumption that the responsible Lorentz force for CME launch is negligible in
the upper part of the solar corona (after a certain heliocentric distance of 20 R⊙, but this assumption
is not always valid as for many events Lorentz force is still comparable with drag force and upper
limit of the heliocentric distance vary from event to event Vršnak (2001); Vršnak et al. (2004);
Sachdeva et al. (2015, 2017) ) and beyond this heliocentric distance the dynamics of the ICME
is dominantly governed by its interaction with ambient solar wind via MHD drag (Cargill, 2004;
Vršnak et al., 2013). Due to MHD drag force ICMEs that are faster (slower) than solar wind have a
tendency to decelerate (accelerate) during propagation, which was also supported by observations
(Gopalswamy et al., 2000). CME radial acceleration according to the DBM approach is given as:

a(r) = −γ
(
v(r)CME − w

)
| v(r)CME − w | (1)

where a(r) and v(r)CME are the instantaneous acceleration and speed of ICME, respectively, w is the
instantaneous ambient solar wind speed, γ is the drag parameter that is also called as drag efficiency.
It is important to note that all the quantities in equation 1 are space and time-dependent. Also,
beyond 20 R⊙, γ and w may be approximated to be constant throughout the heliosphere (Cargill,
2004; Vršnak et al., 2013). Under such approximation, equation 1 can be solved analytically to
obtain heliospheric distance and speed of ICME as a function of time (Vršnak et al., 2013):

v(t) =
v0 − w

1 ± γ(v0 − w)t
+ w (2)

r(t) = ±
1
γ

ln(1 ± γ(v0 − w)t) + wt + r0 (3)

where ± sign accounts for accelerated/decelerated CMEs i.e., plus for v0 > w and minus for v0 < w.
Eqns. 2 and 3 give us the speed and distance as a function of CME propagation time from an initial
distance (at t=0) r0 and take-off speed v0. From those, one can determine the transit time t1AU and
impact speed v1AU at 1AU.

2.2. DBM Inversion Procedure

DBM solution, as given in Vršnak et al. (2013), can be used to obtain the analytical values of free
DBM parameters. If the ICME follows the DBM model, and if its boundary conditions, i.e, initial
position r0, initial speed v0, ToA t1AU and impact speed v1AU are known, then the free parameters of
the model, namely drag parameter γ and solar wind speed w, can be obtained via a mathematical
inversion of the set of equations presented above (eqs. 2 and 3).

(v0 − w)(v1AU − w)t1AU

(v0 − v1AU)
ln
[
(v0 − v1AU)
(v1AU − w)

+ 1
]
+ wt1AU + r0 − r1AU = 0 (4)
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The above equation 4 is solved numerically to obtain w, then using equation 5 is used to directly
compute γ:

γ =
(v0 − v1AU)

(v0 − w)(v1AU − w)t1AU
(5)

2.3. Mathematical Framework

In search for the unique distribution for the free DBM parameters, we applied the DBM inversion
procedure to the existing dataset, published in the previous works of Napoletano et al. (2018) and
Napoletano et al. (2022). A comprehensive description of a dataset is provided in appendix A, while
the summary of a few particular quantities used in this study and associated results are tabulated
in table A.1. In the process of DBM inversion, we discovered that the majority of the CME events
in the dataset lack analytical solutions for the equations 4 and 5. This is unexpected, since ”DBM
is (reasonably) valid during CME propagation for all the CME events” is a null hypothesis for the
dataset. The reason behind this discrepancy is that errors associated with the initial position (r0),
target position (r1), transit time (t1AU), impact speed (v1) and initial speed (v0) were not taken into
account in the inversion procedure. Another possible reason is that DBM is not properly describing
the CME motion (e.g, w = constant is not a realistic approximation; CME-CME interaction is also
possible).

However, for this work, we adhere to our null hypothesis and consider the possibility of including
uncertainties for the measured CME features. To incorporate the errors associated with those quan-
tities, we adapted a pairwise selection approach. It is worth noting that Napoletano et al. (2022)
also adopted a probabilistic approach in the inversion procedure to obtain w and γ. In order to do
that, they assumed that [r0, r1, v0, v1, t1AU] follows a normal distribution and draw random samples,
here the majority of samples are concentrated in the part of the Gaussian curve peak. However, our
pairwise approach allowed us to explore other parts of parameter space where less probable values
exist. We have assumed that two parameters, r0 and r1, do not suffer any errors because their values
are fixed. We took r0 = 20 R⊙ and, for r1 we have used the actual Sun-Earth Distance at a time when
CME is at r0. The arrival speed of CME in the dataset is calculated as a mean of solar wind speed
during a disturbance in plasma and therefore it has associated intrinsic error. The error associated
with arrival speed is relatively small compared to the initial speed and arrival time, therefore it is
neglected in the study. Therefore, we end up with only two quantities, v0 and t1AU which have larger
errors. Next, we made a pairwise selection of (t1AU , v0) for each DBM inversion iteration from the
normal distribution followed by both quantities where µ is the observed value (”Transit Time” and
”v r” is taken as µ) and σ is an error associated with the observed quantity (”Transit time err” and
”v r err” taken as σ). It is important to keep in mind that the tails of the normal distribution function
are 3σ width. For a pairwise selection, we draw 200 samples for t1AU and the same for v0. So in
the end, we have a total of 40,000 possible pairs. After this pair selection, we performed the DBM
inversion to obtain values of w and γ, respectively.

The DBM inversion procedure is a Monte Carlo process and after the inversion procedure, we
have 40,000 possible solutions for w and γ. Many of these values can not be physically feasible,
for example, negative values of w. Vršnak et al. (2013) provided a brief description of their work,
and from there we deduced that the drag parameter γ has a relation with the mass of the CME. In
our primary analysis, we found that the inversion procedure also provides very high values for γ
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which can not be explained by the typical mass range of CMEs. Therefore, it is necessary to employ
constraints on the values obtained through the inversion procedure. The constraints that we imposed
on inversion values are given below.

1. 0 ≤ w ≤ 1000 km/s
Solar wind speed cannot be negative and the typical speed for fast solar wind in literature is
800km/s. It is worth noting that the condition of realistic solar wind speed in Paouris et al. (2021)
is 300-600 km/s which is very narrow compared to us.

2. 0.1 × 10−7 ≤ γ ≤ 3.0 × 10−7 km−1

It is important to note that the typical range for the γ parameter, in Vršnak et al. (2013), is
0.2 − 2.0 × 10−7, but we widen this range to accept a few more extreme solutions. Similarly,
Paouris et al. (2021) has a range of 0.01 − 0.59 × 10−7 for realistic drag parameter but their
obtained values are in the range of 0.21− 0.42× 10−7 (see table-4 of (Paouris et al., 2021)) which
is comparable to our range.

After this, we derive the four main quantities namely Wmean, γmean, Wopt and γopt from the accepted
values of w and γ; the opt values correspond to the DBM input that produced the minimum deviation
from the observed transit time. In order to evaluate the ”goodness” of the inversion procedure, we
define the ”Acceptance Rate” as the ratio between the number of meaningful solutions to the total
number of possible solutions, represented by the number of samples.

Acceptance Rate(AR) =
no. of physically feasible solutions

Total no. of solutions
=

m
n × n

(6)

Here, m is the no. of solutions accepted after applying constrain and n is no. the of samples drawn
from the t1AU and v0 distributions each. Figure 1 shows the flow diagram for the DBM inversion
procedure that we implemented on the CME dataset and how the results of the inversion procedure
are analysed.

3. Results

3.1. Inversion Procedure Results

The inversion procedure was performed on the entire CME-ICME pair catalogue and it turned out
to be successful for 204 out of 213 events. At the end of the inversion procedure, we obtained
3, 664, 748 possible values of w and γ that enable us to provide a statistical distribution for them.
In fig 2, the (γ,w) phase space for the entire ICME dataset is shown and there we can identify the
trend line for a few individual CMEs. From the DBM equation 1, one can easily notice that CME
either accelerate or decelerate during their propagation. Based on these propagation conditions, we
derived two different distributions divided into accelerated and decelerated CMEs. Furthermore, a
free DBM parameter w can also be divided into two groups called the slow and fast solar wind, and
therefore we can draw two more joint distributions based on solar wind speed conditions.
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Fig. 1. Schematic of DBM inversion procedure. The values of boundary conditions are fed into the
equations 4 and 5 using a pairwise approach to obtain w and γ. The obtained values are checked
for selection criteria. The accepted values are used to determine the solar wind condition, the most
suitable PDF of model parameters and CME labelling scheme.

3.2. Determining the quality of inversion process for each CME event

It is important to note that, we claimed that the DBM inversion was successful for 204 events and
therefore there should be 8, 160, 000 possible values of γ and w that are more than double the
numbers we have obtained from the DBM inversion procedure. This discrepancy is due to the fact
that there are many pairs for which the DBM inversion procedure is not successful or the obtained
values of (γ,w) are discarded as they did not fulfil the constraints. This can also be observed in the
(γ,w) phase space of different CME events. Based on the density in the (γ,w) phase space, we label
the event as ”Nice Fit”, ”Poor Fit” and ”Bad Fit”. This labelling helps us to determine which CME
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Fig. 2. Joint distribution of (γ,w) from the inversion procedure. Left Panel:(γ,w) Phase space for
whole dataset (3644748 values) Middle Panel:(γ,w) phase space for the dataset of accelerated CMEs
(25428 values) Right Panel:(γ,w) phase space for the dataset of decelerated CMEs (3619320 values)

event in the database follows the DBM hypothesis. To stay consistent in the labelling procedure,
we used the Acceptance Rate (AR) defined by the equation 6. The description for the labels is as
follows.

1. Nice Fit: AR > 0.5; the DBM approximation is very well valid for this kind of CME event as the
inversion procedure is successful for more than 50 % of the pairs. Therefore, there is a very sharp
trendline in (γ,w) phase space.

2. Poor Fit: 0.25 ≤ AR ≤ 0.5; the DBM is reasonably valid as one can still see the trendline in (γ,w)
phase space.

3. Bad Fit: AR < 0.25; the DBM approximation is less applicable for the events and it is hard to
find the trend line in phase space.

Figure 3 shows event counts in each assigned label. We want to stress here the fact that, this
labeling scheme is a key point for the database that is created as a result of this work. This labeling
helps us to determine which CME event in the database follows the DBM. Events that are flagged
as ”Poor Fit” or ”Bad Fit” are required further investigation. Hereafter, we only focused on the Nice
Fit events to obtain the PDFs for w and γ as it helps to improve the PDFs. Eventually, these better
statistics will lead to better accuracy in CME arrival forecasting.

3.3. Relabelling the Solar Wind condition

We found that there are only 28 CME events that are accelerating during propagation, these are
around 13% of the entire dataset, therefore statistics for accelerating CMEs are not very well re-
solved. In order to find a distribution for the free DBM parameters we established a group of CME
based on solar wind conditions. A dataset that is already obtained as a part of previous work of
Napoletano et al. (2022) contains information about the solar wind speed type ( See Appendix-A
Column: SW type -S/F) based on the presence of Coronal Holes close to the source of a CME. The
group of CMEs formed based on coronal hole presence data provides two completely overlapping
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Fig. 3. Histogram showing a number of events in the ”Nice Fit”, ”Poor Fit” and ”Bad Fit”.

distributions for fast and slow solar wind speeds. This contradicts our current physical understand-
ing of solar wind. Furthermore, the large standard deviation makes the model unsuitable for precise
and reliable real-time space weather forecasting applications. Therefore we relabel the solar wind
type associated with each CME by using threshold Wsim ≥ 500 km/s to discriminate the fast solar
wind from the slow one. This threshold is similar to one that is used in Napoletano et al. (2018). In
figure 4 (γ,w) phase space is shown for the two ”SW type” and ”Wind type” solar wind labeling.
One important point to note here is, the tail part of any distribution in a negative region is due to the
plotting style not due to the presence of any value. Also, from now onward we focus on this new
labeling scheme for solar wind speed.

3.4. PDF for Solar wind Speed

From the joint distribution shown in figure 2, we can extract a distribution function for the solar
wind speed w. Here, we have fitted Gaussian, Student-t and Lognormal functions to the distribution
function as these three functions returned a better fit among different PDFs available in the distfit
package (Taskesen, 2023). In figure 5, the histogram obtained from the dataset and fitted PDFs are
shown. Here we have considered the RSS (Residual Sum of Squares) value to determine which one
is the best fit. In most cases, all 3 distribution functions show a similar RSS value which is clear
from the figure as well. So, in the end, we concluded to select the Gaussian distribution function
for the solar wind speed w to be consistent with previous works of, e.g., Napoletano et al. (2018),
Dumbović et al. (2018), Dumbović et al. (2021), Napoletano et al. (2022).

We categorized our dataset into Slow and Fast CMEs based on the ambient solar wind condition
experienced by the CME during its propagation (using a threshold of 500km/s to separate fast and
slow solar wind conditions), as described before in this section., and attempted again to fit the same
three distribution functions. Unlike the prior attempt, the fitting’s RSS value is not the same for slow
and fast solar wind conditions. For slow CMEs, the ”student-t” distribution describes the best PDF
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Fig. 4. (γ,w) Phase space in different solar wind speed condition labeling scheme. On the x-axis,
W sim shows solar wind speed obtained from a DBM inversion with a unit of km/s while on the
y-axis drag (Gamma sim) value obtained from the inversion procedure is shown on a unit scale of
km−1

Fig. 5. Probability distribution functions for solar wind speed w for accelerated and decelerated
CMEs with a kernel density ρ on the Y-axis. Left: w PDFs for accelerated CMEs with Nice Fit
label. Note that the normal and student-t distributions overlap with each other Right: w PDFs for
decelerated CMEs with Nice Fit label. All three distribution functions overlap with each other. The
overlapping of functions is evident through RSS values.

while for fast CMEs the lognormal function is the most suitable PDF. Here, we only emphasize
the fact that ”student-t” and ”lognormal” distributions are the best fits and are strongly biased by
the hard thresholding. In figure 6 PDFs for the slow and fast solar wind conditions are shown. The
parameters for the fitted distributions are reported in table 1.
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Fig. 6. Probability distribution functions for solar wind speed w for slow and fast CMEs. Left: w
PDFs for slow CMEs with Nice Fit label. Right: w PDFs for fast CMEs with Nice Fit label. (In both
cases the Normal and Student-t functions overlapped with each other)

Table 1. Parameters for the different functions used to model the Solar wind speed distribution.
For the Lognormal function, tabulated values can not be used directly as average and standard
deviation. The transformation from the fitting parameters to values used in the model can be done
by the equation B.4.

CME Group PDF w̄[Km/s] σw[Km/s] Args RSS
Accelerated Normal 503.356 55.848 - 0.000538

Student’s-t 503.356 55.848 1.526×106 0.000538
Lognormal -0.407 3.910 349.009 0.001469

Decelerated Normal 409.168 117.545 - 0.00046
Student’s-t 409.168 117.543 1.479×105 0.00046
Lognormal 9.524 0.009 -1.328×104 0.000458

Slow Normal 370.530 88.585 - 0.000714
Student’s-t 383.169 64.944 4.101 0.000622
Lognormal 9.784 0.005 -1.738×104 0.00072

Fast Normal 579.058 67.871 - 0.002862
Student’s-t 579.058 67.872 1.837×106 0.002862
Lognormal 4.084 0.883 494.597 0.001934

Paouris et al. (2021) has studied the same 16 CME-ICME events from the Dumbović et al. (2018)
to compare the performance of the Effective Acceleration Model (EAM) with Drag Based Ensemble
Model (DBEM). They have also performed the inversion technique to find optimal values of solar
wind speed w and drag parameter γ. In the table 3.4 below optimal values of w from different studies
have been shown. It is important to note that the sample size employed in Napoletano et al. (2022)
and this work is large. That helps to explain the higher value of the standard deviation.
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Table 2. Optimal values for solar wind speed w from different studies

Optimal Solar wind speed
w [km/s]

Standard deviation
σw [km/s]

Dumbović et al. (2018) 350 50
Napoletano et al. (2018) (slow) 400 33
Napoletano et al. (2018) (fast) 600 66
Paouris et al. (2021) 431 57
Čalogović et al. (2021) 450 150
Napoletano et al. (2022) (slow) 370 80
Napoletano et al. (2022) (fast) 490 100
This work (slow) 370 88
This work (fast) 579 68

3.5. PDF for Drag Parameter

For the drag parameters, we have employed the same methods and distribution functions that we
have used for the solar wind to infer the PDF. The RSS values obtained from the various fits are
significantly different. The lognormal distribution consistently emerges as the best fit among various
considered distribution functions throughout a wide range of cases. In figure 7, distributions fitting
for the accelerated and decelerated CMEs are shown, while in figure 8 PDFs for slow and fast CMEs
are shown.

Fig. 7. Probability distribution functions for drag parameters γ for accelerated and decelerated
CMEs. Left: w PDFs for accelerated CMEs with Nice Fit label. Right: w PDFs for decelerated
CMEs with Nice Fit label.

4. Discussion and Conclusions

The collection of CME-ICME pairs published in Napoletano et al. (2022) has been improved by the
inclusion of DBM simulation data, PDF fitting parameters, and various other significant variables
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Fig. 8. Probability distribution functions for drag parameters γ for slow and fast CMEs. Left: w
PDFs for fast CMEs with Nice Fit label. Right: w PDFs for slow CMEs with Nice Fit label.

Table 3. Parameter for different PDFs used to model drag parameter distribution. For the Lognormal
function, tabulated values can not be used directly as average and standard deviation. The transfor-
mation from the fitting parameters to values used in the model can be done by the equation B.4.

CME Group PDF γ̄[Km−1] σγ[Km−1] Args RSS
Accelerated Normal 1.590×10−7 5.793×10−8 - 2.528×1013

Student’s-t 1.503×10−7 4.247×10−8 1.988 2.490×1013

Lognormal -15.642 0.354 -1.186×10−8 6.385×1012

Decelerated Normal 9.339×10−08 7.562×10−08 - 1.089×1015

Student’s-t 6.899×10−08 5.016×10−08 1.988 8.029×1014

Lognormal -16.178 0.652 0.6518 2.723×1014

Slow Normal 8.609×10−08 7.419×10−08 - 1.519×1015

Student’s-t 5.936×10−08 4.595×10−08 1.988 1.010×1015

Lognormal -16.252 0.658 -2.276×10−08 4.034×1014

Fast Normal 1.256×10−07 7.342×10−08 - 5.319×1014

Student’s-t 1.079×10−07 5.238×10−08 1.988 4.749×1014

Lognormal -15.884 0.518 -1.838×10−08 2.575×1014

related to each individual CME-ICME occurrence. By quantifying the success rate of the DBM
inversion procedure, we were able to identify a subset of CME-ICME pairs that are well described
by the DBM during their heliospheric propagation and added to the dataset the information about
such categorization of CME events. This kind of categorization delivers a lot of promise for the
space weather community, as it can provide significant insights into the circumstances that make
the DBM approximation fail to predict the transit time for a CME event. On the other hand, those
CME events where the DBM approximation is very valid can contribute to providing information
about the model parameters w and γ. It is worth mentioning that the version of DBM we used
does not consider the CME geometry, with a very simple CME front described as a spherical shell
centred on the Sun. Thus, all the CME-ICME entries that do not follow the DBM hypothesis deserve
even further investigation, since we cannot tell if a ’no solution’, a ’poor’ or a ’bad’ label actually
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comes from a possible error in the initial CME-ICME association, a shortage in the geometrical
description of the ICME, or something happening during the ICME propagation that cannot be
described by the DBM (e.g. a CME-CME interaction). This, however, would require a thorough
analysis of every single ICME and is beyond the scope of this work and may be the subject of
a different work. The revised CME-ICME collection we are presenting also includes additional
details such as the solar wind speed conditions experienced by propagating CME events, more
parameters about the validation of the DBM hypothesis, and information about the acceleration or
deceleration mechanisms during their propagation. The list of the improvements over the previous
version published by Napoletano et al. (2022) are summarised in table A.1. The revised dataset
compiled and used in this work has been published at https://zenodo.org/record/8063404
and a description of its columns is also provided in the appendix A.

As just mentioned, the subset of events where the DBM approximation holds can be employed
to extract the γ and w parameters of the DBM via a Monte Carlo-like inversion procedure. In this
statistical study, we consider the uncertainties associated with the measure and the observation and
incorporate them as input for the model and we only consider those CME events with more than
50% acceptance rate in the inversion procedure. The reason behind this criterion is to ensure that
the CME propagation is modeled by DBM with enough confidence.

We have retrieved γ and w for 204 out of 213 ICMEs, which enables us to obtain robust statistics.
The empirical PDF for the solar wind w is modeled using two separate distributions for slow and fast
solar wind conditions respectively with a threshold value of w = 500 km/s for the fast solar wind.
In Dumbović et al. (2018), Dumbović et al. (2021), Napoletano et al. (2018) and Napoletano et al.
(2022), a Gaussian distribution is assumed as input PDF for w. Here, we have used the threshold of
w = 500 km/s for the fast solar wind speed, therefore, a normal distribution is no longer the ideal
PDF. With this new threshold, the Student’s t-distribution is the best choice for most CME events.
This latter finding is also supported by fitting PDFs for w in a single CME approach. In Figure
9, a histogram of the most suitable PDFs for w in individual CMEs approach is shown. Here, the
Student’s t-distribution is strongly biased by the fact of hard thresholding and the RSS values of
Student’s-t and normal distribution are fairly comparable, we therefore prefer the Gaussian PDF for
the solar wind w.

The PDF for γ is up for discussion from the previous works of Napoletano et al. (2018),
Napoletano et al. (2022) and Dumbović et al. (2018),Dumbović et al. (2021), Čalogović et al.
(2021). One group employs a lognormal function, while the other group uses a Gaussian Function
as input PDF. We have tried to fit the PDF on the entire dataset and single CME events, and our
study has provided light on the preference for these two different functions. From table 3, it is clear
that lognormal distribution is the most favourable PDF as the RSS value is lower among other
PDFs. On the contrary, when searching for the most suitable PDF in the single CME approach,
the Gaussian PDF seems to be the best. In Figure 9, a histogram of the most suitable PDFs for γ
in individual CME approach is shown. A possible reason behind this discrepancy is the extensive
dataset. Here, we have a used very large dataset of CME, which covers different ranges of mass
and cross-sections of CME, also including almost two solar cycles’ length of CME events resulting
in several kinds of solar wind density fluctuations in CME propagation. The inclusion of all
these background parameters in fitting a PDF through a dataset leads to the long-tailed lognormal
function since the γ-parameter is a quantitative measure of the drag efficiency that depends on
many factors such as the mass and the cross-section of the CME, and on the solar wind density
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(Vršnak et al., 2013).

The refined dataset and the updated method presented in this work allowed us to explore a
larger part of the w − γ parameter space of the P-DBM model, including extreme values. We
have investigated the possibility of γ being a function of the ICME kinematic properties (i.e.,
accelerating or decelerating) or the solar wind properties (i.e., fast or slow). While there seems
to be some difference between accelerating or decelerating ICME (see table 3 and Figure 7), the
statistics need to be more robust to draw strong conclusions.

We suggest that our result and in particular, the revised CME-ICME list will benefit the space
weather community since it will provide a test bench to compare how well we can predict CME
arrival time and impact. Also, the associated information to every CME-ICME entry can help im-
prove the accuracy and precision of other CME propagation models by including other relevant
parameters. For example, a future plan of ours is to develop a Markov Chain Monte Carlo (MCMC)
approach to further constrain the PDF for w and γ. This catalogue’s new entries are expected to
play a relevant part in this work, promoting the convergence of Markov chains and boosting the
performance of our strategy.

Fig. 9. Histogram illustrating most suitable PDF for solar wind speed w and drag parameter γ in
single CME approach. Within each PDF, various types of CME events are stratified and effectively
stacked on top of one another.
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Appendix A: Description of revised data set.

As mentioned above, DBM inversion procedure requires initial position r0, target position r1AU ,
transit time t1AU , initial speed v0 and arrival speed va to obtain w and γ. For the purpose of this work,
we have used the CME-ICME dataset from the Napoletano et al. (2022). This dataset contains all
the required input quantities for the DBM inversion procedure. This dataset consists of 213 CME-
ICME pairs from the year 1997 to 2018, which cover a time span of two solar cycles 23 and 24. In
this dataset, information about the kinematic properties of CMEs at launch time was retrieved from
the SOHO/LASCO CME Catalog 1. While arrival time and speed of the related ICMEs have been
obtained from the Richardson and Cane (2010).

As mentioned in section 2.2, the uncertainty associated with different quantities is included in
the inversion procedure. SOHO/LASCO catalogue provides CME speed in the plane of sky (POS)
but to make a DBM forecast more accurate de projected speed has been used in the calculation. De
projected radial speed has been obtained using equation 1 of Gopalswamy (2009). A more detailed
explanation is given in appendix A2 of Napoletano et al. (2022). Associated solar wind speed type
(column: SW type) for each event is hypothesised by determining the presence of a coronal hole
close to the CME source region (see appendix A3 of Napoletano et al. (2022))

The Description of different columns in the database and their source work is provided in a table
A.1

Appendix B: Mathematical description of Lognormal Distribution

To find the parameters of lognormal PDF we have used a python package named distfit Taskesen
(2023) which relies on SciPy Virtanen et al. (2020). The standardized form of lognormal function
is given as:

f (x, s) =
1

sx
√

2π
exp(
− ln2 x

2s2 ) (B.1)

To shift and/or scale the above distribution function, SciPy or distfit use two more input parame-
ters namely loc and scale. With these 2 more parameters, the new function will be:

f (x, s, loc, scale) =
f (y, s)
scale

(B.2)

1 https://cdaw.gsfc.nasa.gov/CME_list/
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Table A.1. Column description of the ICME dataset created as a part of this work

Name Keyword Description Source

LASCO Start LASCO Start First CME appearance in LASCO C2/C3 coronagraphs LASCO/CDAW
Start Date Start Date Time when CME reaches to 20 R⊙ Napoletano et al. (2022)
Arrival Date Arrival Date Estimated arrival time of ICME using insitu signatures R & C
Plasma Event Duration PE duration End of ICME plasma signatures after col 3 is recorded R & C
Arrival Speed Arrival v ICME arrival speed at L1 (km/s) R & C
Transit Time Transit time (hrs) Computed between col 1 and col 3 Napoletano et al. (2022)
Transit Time Error Transit time err (hrs) Error associated to the start date of CME Napoletano et al. (2022)
LASCO date LASCO Date Most likely associated CME observed by LASCO LASCO/CDAW
LASCO speed LASCO v (km/s) speed correspond to the fastest moving point of CME in LASCO FOV LASCO/CDAW
Position Angle LASCO pa (deg) Counterclockwise (from solar North) angle of appearance into coronographs LASCO/CDAW
Angular Width LASCO da (deg.) Angular expansion of CME into coronographs LASCO/CDAW
Halo LASCO halo If LASCO da is >270° then ’FH’ (full halo), if >180° ’HH’ (half halo), if >90° ’PH’(partial halo), otherwise ’NO LASCO/CDAW
De- Projected Speed v r (km/s) De-projected CME speed Napoletano et al. (2022)
De- Projected Speed Error v r err (km/s) Uncertainty of CME initial speed Napoletano et al. (2022)
Theta Source Theta source (arcsec) Longitude of the most likely source of CME Napoletano et al. (2022)
Phi Source Phi source (arcsec) Co-latitude of the most likely source of CME Napoletano et al. (2022)
Source POS error source err (deg.) Uncertainty of the most likely CME source Napoletano et al. (2022)
POS source angle POS source angle (deg.) Principal angle of the most likely CME source Napoletano et al. (2022)
Relative width rel wid (rad.) De-projected width of CME Napoletano et al. (2022)
Mass Mass (gm) Estimated CME Mass LASCO/CDAW
Solar Wind Type(CH) SW type Solar wind (slow, S, or fast, F) interacting with the ICME based on the presence of coronal hole near CME location Napoletano et al. (2022)
Bz Bz (nT) z-component of magnetic field at L1 and CME arrival time R & C
Dst DST Geomagnetic Dst index recorded at CME arrival R & C
Statistical de projected speed v r stat (km/s) Statistical de-projected CME speed, that is, v r stat = LAS CO v ∗ 1.027 + 41.5
Acceleration Accel. (m/s 2) Residual acceleration at last CME observation Napoletano et al. (2022)
Analytical Wind Analyitic w (km/s) solar wind from DBM exact inversion Napoletano et al. (2022)
Analytical gamma Analyitic gamma (km−1) drag parameter, γ, from DBM exact inversion Napoletano et al. (2022)
Transit Time (Simulated) T1 Sim (hrs) Transit time calculated using P-DBM This Work
Transit Time error (Simulated) T1 Sim err (hrs) error associated with transit time in P-DBM This Work
Impact Speed (Simulated) V1 Sim (km/s) calculated CME arrival speed using P-DBM This Work
Impact Speed error (Simulated) V1 Sim err (km/s) error associated with arrival speed in P-DBM This Work
Solar Wind Speed W Sim (km/s) Mean value of solar wind speed from inversion procedure This Work
Solar Wind Speed Error W Sim err (km/s) Standard deviation of solar wind speed from inversion procedure This Work
Gamma Simulated Gamma Sim s (km−1) ’s’ parameter for lognormal PDF This Work
Gamma Error Simulated Gamma Sim loc (km−1) ′loc′ parameter for lognormal PDF This Work
Gamma Simulated (log) Gamma Sim scale ′scale′ parameter for lognormal PDF This Work
Optimal Transit Time T1 opt Minimally deviated transit time compared to observed one This Work
Optimal Impact Speed V1 opt V1 correspond to T1 opt This Work
Optimal W W opt W correspond to T1 opt This Work
Optimal gamma Gamma opt gamma correspond to T1 opt This Work
Optimal V r V r opt V r correspond to T1 opt This Work
W CI min W99 min minimum value of 99% confidence interval for w This Work
W CI max W99 max maximum value of 99% confidence interval for w This Work
Gamma CI min Gamma99 min minimum value of 99% confidence interval for gamma This Work
Gamma CI max Gamma99 max maximum value of 99% confidence interval for gamma This Work
CME Type (V r opt) CME type CME type based on W sim (Accelerating/ Decelerating ) This Work
CME Type (V r) CME type v0 CME type based on W opt (accelerating: A/ decelerating D) This Work
Solar wind Type (Wth) Wind type Solar wind (based on threshold value) interacting with ICME This Work
Target distance R1(AU) (AU) Sun-Earth Distance at CME start date (Col2) This Work
Fitting Fitting(AR) Goodness of Inversion procedure: Nice / Poor / Bad This Work
Acceptance Rate Acceptance Rate Acceptance rate of inversion procedure This Work
Best W PDF Best fit W Most suitable PDF for W This Work
Best gamma PDF Best fit gamma Most suitable PDF for gamma This Work

where y = x−loc
scale . Suppose, a variable X is following a normal distribution with parameters µ and

σ. Then, lognormally distributed variable Y=exp(X) has µ = ln(scale) and σ = s. The simplified
version of formula B.2 is given as follow:

f (x, s, loc, scale) =
1

s(x − loc)
√

2π
exp
[
−

( (ln(x − loc) − µ)
√

2s

)2]
(B.3)

while a lognormal function used by Napoletano et al. (2018) is

f (x, ) =
1

s
√

2π
exp
[
−

( (lnx − µ)
√

2s

)2]
(B.4)
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VanderPlas, J., A. J. Connolly, Ž. Ivezić, and A. Gray, 2012. Introduction to astroML: Machine
learning for astrophysics. In 2012 conference on intelligent data understanding, 47–54. IEEE.
Https://doi.org/10.1109/CIDU.2012.6382200. 1

Veettil, S. V., C. Cesaroni, M. Aquino, G. De Franceschi, F. Berrili, et al., 2019. The ionosphere pre-
diction service prototype for GNSS users. Journal of Space Weather and Space Climate, 9, A41.
Https://doi.org/10.1051/swsc/2019038. 1

Virtanen, P., R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, et al., 2020. SciPy 1.0:
fundamental algorithms for scientific computing in Python. Nature methods, 17(3), 261–272.
Https://dx.doi.org/10.1038/s41592-019-0686-2. B

Vourlidas, A., S. Patsourakos, and N. P. Savani, 2019. Predicting the geoeffective properties of coronal mass
ejections: current status, open issues and path forward. Philosophical Transactions of the Royal Society
A: Mathematical, Physical and Engineering Sciences, 377(2148), 20180,096. 10.1098/rsta.2018.0096. 1
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